Chromatin Fiber Structure: Morphology, Molecular Determinants, Structural Transitions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin fiber structure: morphology, molecular determinants, structural transitions.

Despite more than 20 years of research, the structure of the chromatin fiber and its molecular determinants remain enigmatic. Recent developments in high-resolution microscopic techniques, as well as the application of mathematical modeling to chromatin fiber structure, have allowed the acquisition of some new insights into the structure and its determinants. Here we present some of the newest ...

متن کامل

Nucleosome shape dictates chromatin fiber structure.

In addition to being the gateway for all access to the eukaryotic genome, chromatin has in recent years been identified as carrying an epigenetic code regulating transcriptional activity. Though much is known about the biochemistry of this code, little is understood regarding the different fiber structures through which the regulation is mediated. Over the last three decades many fiber models h...

متن کامل

Nucleosomal Barrier to Transcription: Structural Determinants and Changes in Chromatin Structure.

Packaging of DNA into chromatin affects all processes on DNA. Nucleosomes present a strong barrier to transcription, raising important questions about the nature and the mechanisms of overcoming the barrier. Recently it was shown that DNA sequence, DNA-histone interactions and backtracking by RNA polymerase II (Pol II) all contribute to formation of the barrier. After partial uncoiling of nucle...

متن کامل

Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains.

Experiments based on chromosome conformation capture have shown that mammalian genomes are partitioned into topologically associating domains (TADs), within which the chromatin fiber preferentially interacts. TADs may provide three-dimensional scaffolds allowing genes to contact their appropriate distal regulatory DNA sequences (e.g., enhancers) and thus to be properly regulated. Understanding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 1998

ISSN: 0006-3495

DOI: 10.1016/s0006-3495(98)77963-9